Evaluations as Sets over Lattices

Application point of view

Rainer Bruggemann, Adalbert Kerber

Bruggemann_Neuchatel_FCA.pptx

Recall: Lecture of Kerber

$$\tilde{\tau}(\alpha,\beta) = \bigvee \{ \gamma \mid \tau(\alpha,\gamma) \leq \beta \}.$$

In this case τ is called a *residual t*-norm.

— This yields a logic corresponding to L and τ , namely $\tilde{\tau}$.

— o has attribute a if and only if $\mathcal{E}(o, a) > 0$. And we put

$$\mathcal{A}'(o) = \tilde{\tau}(\mathcal{A} \Rightarrow \mathcal{E}) = \bigwedge_{a \in A} \tilde{\tau}(\mathcal{A}(a), \mathcal{E}(o, a)).$$

Recall..., cont'd

— We evaluate ' $\mathcal{A} \in \mathcal{L}^{\mathcal{A}}$ implies $\mathcal{B} \in \mathcal{L}^{\mathcal{A}}$ in \mathcal{E} ' by:

$$\tilde{\tau}(\mathcal{A}\Rightarrow\mathcal{B})=\bigwedge_{o\in\mathcal{O}}\tilde{\tau}(\mathcal{A}'(o),\mathcal{B}'(o)).$$

The focus of this lecture: "implication" and to reveal

the secrets behind mapping ${\cal A}$

We are going to apply this mathematical concept

• His: 4 : A an m-tuple {0,1}^m

His: \mathcal{B} : B another m-tuple $\{0,1\}^m$

His: $\tilde{\tau}$: s* (residuum of standard norm)

• s*(x,y) = 1 if $x \le y$ s*(x,y) = y otherwise

Cont'd

- Q: the indicator set {q(1),...,q(m)}
 X: the set of objects {x(1), x(2),...,x(n)}
- x(i,j) is what Kerber called $\varepsilon(o,a)$, i.e. an entry of the data matrix:

i_{th} object,j_{th} indicator

Notation, cont'd

- In the application we have in mind: A(j), B(j)
 are selecting certain (crisp) subsets of Q
- I.e.: We want to know whether or not, for instance, q(j) implies q(j*)
- Or more generally: {q(j1), q(j2)} implies {q(j3), q(j4)}, etc.

What do we want to know?

- 1. How is this simplest question $(q(j) \rightarrow q(j^*))$ related to the entries of the data matrix?
- 2. What is the truth value (tv) of this implication
- 3. And especially: When tv = 1 and what is its meaning in terms of data exploration

First step

- Whether or not an implication holds, depends on the evaluation of the "object x has indicator q(j)" relation
- Central there is A and its derivation A'
- A'(x) needs the calculation of s*
- s*, the residuum of standard norm

For one object x(i) and e.g. A=(0,0,1,0)

- Min{s*(0, x(i,1)), s*(0, x(i,2)),
 s*(1, x(i,3)), s*(0, x(i,4))}
- $A'(x(i)) = Min\{1, 1, x(i,3), 1\} = x(i,3)$
- For example A = (0,1,0,0,1,0,0) would select the 2nd and 5th indicator of Q, with |Q| = 7

$$A = \begin{cases} (0, 1, 0, 0, 1, 0, 0) \\ \downarrow \\ q(1) \ q(2) \dots q(5) \dots q(7) = \{q(1), \dots, q(7)\} =: Q \end{cases}$$

$$X := \begin{cases} x(1) \\ x(2) \\ \dots \end{cases}$$

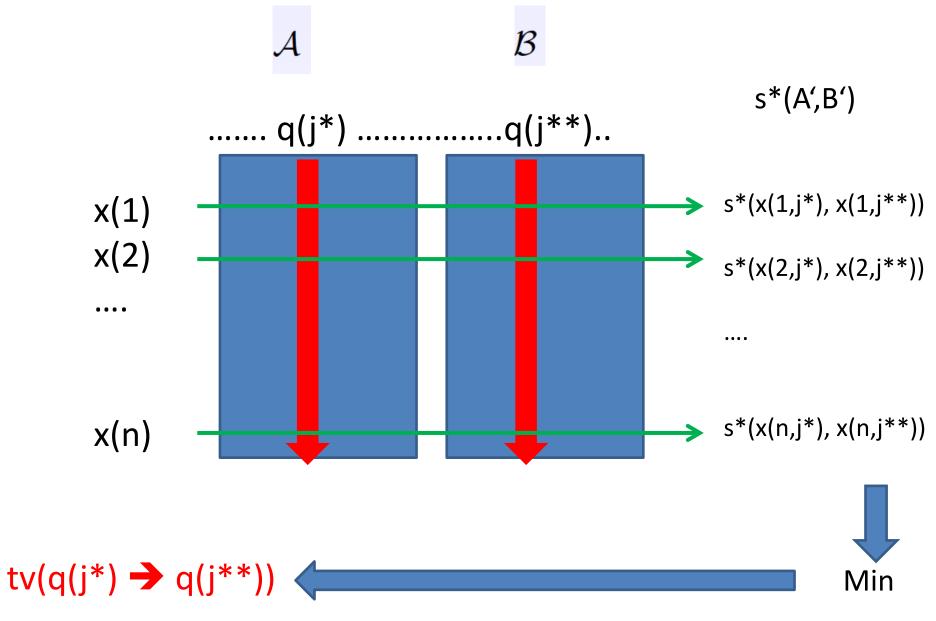
$$x(n)$$

I.e.

- (1) For one object x(i), just the values x(i,2) and x(i,5)
- (2) Selecting the minimal value for each row

When A describes a singleton $\{q(j^*)\}$, selecting the j*th indicator in position j*, then the result is $x(i,j^*)$.

The evaluation of $tv(q(j^*) \rightarrow q(j^{**}))$ is now easy:



over set X

Example 1: Application of Kerber: The refrigerants

- ALT: atmospheric lifetime
- ODP: Ozone depletion potential
- GWP: General Warming Potential
- Chemical structure (only 3 terms)
 - Cl: presence of Chlorine
 - F: presence of Fluorine
 - nC: At least one C-C bond

An application on Refrigerants, see Kerber: Fuzzy-FCA PyHasse program L_eval19:

Actually used data matrix

	ALT	ODP	GWP	nC	Cl	<u> </u>
"1"	0.01	0.2	0.32	0.0	1.0	1.0
"2"	0.03	0.16	0.72	0.0	1.0	1.0
"6"	0.0	0.02	0.05	1.0	1.0	1.0
"7"	0.01	0.01	0.15	1.0	1.0	1.0

standard-norm

premises only by one attribute

Analysis

concerning the set chemicals "1", "2", "6", "7":

CCl₃F, CCl₂F₂, C₂H₃Cl₂F, C₂H₂ClF₂

- (1) F, implies Cl, with truth-value 1.0
- (2) Cl, implies F, with truth-value 1.0
- (3) nC, implies F, with truth-value 1.0
- (4) nC, implies Cl, with truth-value 1.0
- (5) nC, implies Cl, F, with truth-value 1.0

GWP, implies F, with truth-value 1.0

GWP, impliferese wres with share cobtained with data ∈ [0,1]

GWP, impliered: I restriction on we subset of the first four

ODP, implies in with trush-value 1.0

ODP, implies Cl, with truth-value 1.0 What is the meaning of truth-value ODP, implies Cl, F, with truth-value 1.0

ODP, imples Which role plays the restriction on a certain subset.

ODP, implies GWP, F, with truth-value 1.0

ODP, implies GWP, Cl, with truth-value 1.0

ALT, implies F, with truth-value 1.0

ALT, implies Cl, with truth-value 1.0

ALT, implies GWP, with truth-value 1.0

Implic. (1)-(5) trivial CCl₂F, CCl₂F₂, C₂H₃Cl₂F, C₂H₂ClF₂

Example 2: Eight regions (labelled 1,10,24,...) along river Rhine.

Pollution of the herb layer by Pb, Cd, Zn and S

```
standard-norm
premises and conclusions: only one indicator
Analysis
concerning the set of objects as follows
X = \{1, 10, 24, 31, 19, 43, 52, 56\},\
S, implies Zn, with truth-value 0.0
S, implies Cd, with truth-value 0.0
S, implies Pb, with truth-value 0.0
Zn, implies S, with truth-value 0.0
Zn, implies Cd, with truth-value 0.091
Cd, implies Zn, with truth-value 0.476
```

- The truth values (tv) are rarely = 1, therefore the questions reformulated:
- (1)Under which conditions tv = 1
- (2) Can we explore the role of subsets of X?

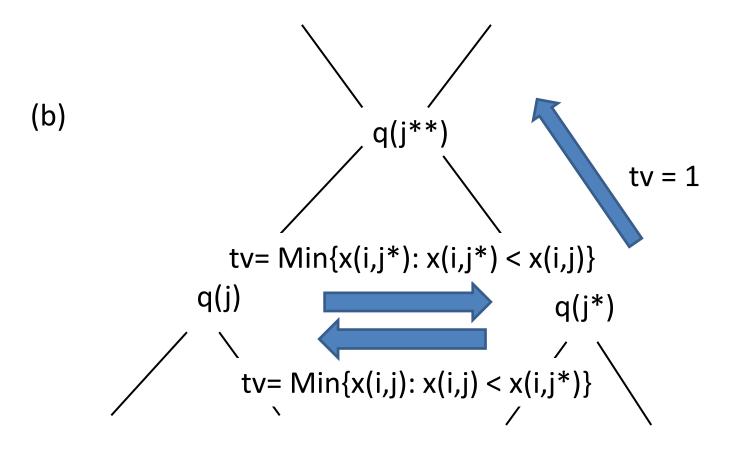
Some observations

(a) For any subset XS of X:

 $XS \subseteq X$: $tv(XS) \ge tv(X)$

(b) The product order taken from the transposed data matrix (indicators evaluated by the objects) is relevant:

Observations (cont'd)



Any combinations of indicators: Search their min-value for all x and locate it in the HD of the transposed data matrix

Discussion

- Up to know: Only implications of a special form, namely implications between indicatorsubsets of only one element, are examined in details
- $x(i,j) \le x(i,j^*)$ for all $i \Rightarrow tv(j \rightarrow j^*) = 1$
- tv and correl seem to have nothing to do with each other
 - tv not symmetric, correl: symmetric
 - if not $x(i,j) \le x(i,j^*)$ for all i, then tv depends on the smallest value (either of x(i,j) or $x(i,j^*)$)
 - No robustness of tv

Fictitious example

	q1	q2
x1	0	0
x2	0.1	0.1
x3	0.2	0.2
x4	0.3	0.3
x5	0.4	0.4
x6	0.5	0.5
x7	0.6	0.6
x8	0.7	0.7
x9	0.8	0.8
x10	0.9	0.9
x11	1.0	varied

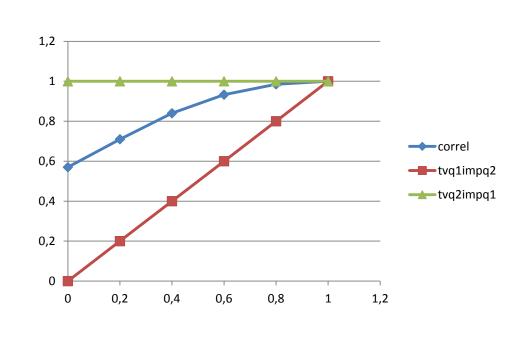
Pearson correlation and $tv(q1 \rightarrow q2)$ when "varied" $\in \{0.1, 0.2, ..., 1\}$

Correlation vs implication

Correlation: blue

 $tv(q1 \rightarrow q2)$: brown

tv(q2→q1): green



Answers (take home message)

- 1. Whether or not q(j) implies $q(j^*)$ depends to the frequency of $x(i,j^*) > x(i,j)$ $x(i) \in XS \subseteq X$
- 2. tv = 1 if $x(i,j) \le x(i,j^*)$ for all $x(i) \in XS \subseteq X$
- 3. $tv (of x \in X) \leq tv (of x \in XS \subseteq X)$
- 4. Correlation and ty seem to be not related

Tasks for the future

- Which role plays the data precision
- Can we find some kind of defuzzification for tv? I.e. As to how far we can see an implication as "relevant", when tv <1?
- Some work is already done, but is not presented in this lecture, because still many theoretical questions are open:
 - Concepts
 - Implications among subsets of Q, being no singletons
 - Duquenne, Guigues-basis
 - Implications derived directly from concepts (as is possible in the conventional FCA (Ganter, Wille, 1996))

Thank you for attention